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Abstract

Suggestions for efficiently determining the lifetimes and mass difference of the
light and heavy B, mesons (B, BF) from B, — J/¢¢, Dt D~ decays are given.
Using appropriate weighting functions for the angular distributions of the decay
products (moment analysis), one can extract (I'g,l'z, Am)g,. Such a moment
analysis allows the determination of the relative magnitudes and phases of the
CP-odd and CP-even decay amplitudes. Efficient determinations of CP-violating
effects occuring in By — J/v¢, Dt D?~ are discussed in the light of a possible
width difference (AT')p,, and the utility of this method for B — J/4K*, Dt D"
decays is noted. Since our approach is very general, it can in principle be applied
to all kinds of angular distributions and allows the determination of all relevant
observables, including fundamental CKM (Cabibbo-Kobayashi-Maskawa) param-
eters, as well as tests of various aspects of the factorization hypothesis. Explicit
angular distributions and weighting functions are given, and the general method
that can be used for any angular distribution is indicated.
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I Introduction

Strategies for obtaining experimental insights into CP violation and non-factorizable con-
tributions to weak decays are of particular interest for present particle physics. The ob-
servables of angular distributions can be obtained in an efficient way by using an angular
moment analysis []-[B]. In this approach, the observed experimental data are weighted
by judiciously chosen functions, which project out any desired observable. This strategy
is an alternative to the usual likelihood fit method [4]. It is demonstrated that the mo-
ment analysis extracts all observables of measured angular distributions, such as the ones
occurring in weak decays of pseudoscalars [P — Vv, Xjlv, VV, etc.]. This method is
of general validity. In our present paper, we apply the formalism to angular distributions
M. 6] of By and B meson decays into two vector-meson final states that are caused by
b — sce quark-level transitions. By making use of the general formalism outlined in this
paper, it is straightforward to derive weighting functions for other exclusive mesonic or
baryonic transitions, governed for instance by b — cud, clv. ulv, ¢ — sdu, sltv, ditv.

The mixing between neutral B, mesons is expected to give rise to CP-even (BL) and
CP-odd (BH) mass eigenstates, which may have a perceptible width difference AT =
I'y — Iy [[]. Using appropriate weighting functions for the angular distributions of the
decay products in the transitions B; — J/¢'¢ and/or By — D*T D*~, one can extract
(FH, FL7 Am)BS.

A characteristic feature of the angular distributions considered in this paper is the
fact that they contain terms describing interference effects between CP-even and CP-odd
final-state configurations. Because of the lifetime difference, these contributions give rise
to a term in the time evolution of the untagged rate, which is proportional to [§]:

(e_rHt — e_rLt) sin PeKM - (1)

where ¢cxum is a weak phase that is introduced through the CKM matrix [@]. In the B,
decays considered in the present paper, ¢cxm is related to the Wolfenstein parameter
n [10]. It is a remarkable feature that time-evolved untagged data samples of angular
distributions of B, decays may exhibit CP-violating effects, if AT is sizeable [8, 1'1]. This
feature may be important, because it provides an alternative to previous investigations,
which have shown how to extract sin ¢ckm from tagged, time-dependent analyses [12, 13].
This extraction, however, may not be feasible in the near future because it requires
tagging and superb vertex detectors., which must resolve the rapid Amt oscillations. In
contrast, any dependence on Amt cancels in untagged data samples, which therefore
allow feasibility studies with current vertex technology [14].

Concerning tests of the factorization hypothesis [15])-R0], we divide the b — scc
modes into the following two categories:

e colour-suppressed decays: B, — J/¢YV with (¢, V) € {(s,9);(d, K*°); (u, K**)}
21, 22].

e colour-allowed decays: B, — D?Ez with ¢ € {s.d,u} [¥3, 24].



Whereas the validity of the factorization assumption is very doubtful in the colour-
suppressed case, it should work much better for the colour-allowed channels because
of colour transparency [iI8]. The latter have furthermore rather tight restrictions from
the Heavy Quark Effective Theory (HQET) [25] for the form factors describing the
“factorized” hadronic matrix elements of the relevant four-quark operators [23, 24, 28].

Our paper is organized as follows: in Section I we calculate the transition matrix
elements and observables of the angular distributions by using an appropriate low-energy
effective Hamiltonian. There we also give estimates for these observables, allowing a com-
parison with experimental data. The efficient experimental determination of these ob-
servables is the subject of Section 1T, where we shall discuss the angular moment analysis.
Sections IViand Viare devoted to the angular correlations in the colour-suppressed decays
B, — J/i¢. B — J/pK* and the colour-allowed decays B, — D*t*D*~, B — D** D",
respectively. There we give the time evolutions of the angular distributions, appropriate
weighting functions, and discuss CP-violating effects. Finally in Section VI the main
results are summarized.

IT Transition matrix elements and observables

Before we present an efficient method for extracting the observables of the angular dis-
tributions from experimental data — the angular moment analysis — let us discuss in this
section how these observables are calculated and what orders of magnitude we expect
for them.

II-A General aspects

In order to calculate the decay amplitudes of the b — 5cé transitions considered in this
paper, we use an appropriate low-energy effective Hamiltonian, which has the following
structure:

Gy
Her = —=
BV

Here the quantities )\;S) = VjV}; denote CKM factors,

3 {Q{Cl(u) + Q4Cs(p) + 2 Qka(u)}] : (2)

Jj=u,c

Qi = (Ea55>V—A (Zi)ﬁca)v_A7 Q; = (EQSQ)V—A (Bﬁcﬁ)V—A

QY = (tasp)v-r (bgua)v_a.  Qf = (Uasa)v_a (baus)v_a (3)

are “current—current” operators,

Qs = (basa)v—a > (Gsgs)v-r. Qa=(basg)lv—a Y. (GsGa)v-a

9=u.d.s,c,b g=u.d,s.c,b
Qs = (basa)v_a Z (4398)v+a Qs = (basg)v-a Z (G8Ga)v+a (4)
q=u,d.s,c,b g=u.d,s.c,b



describe QCD penguins, while the operators

Qr =5 (basa)v_n D € (Gsqs)vea QSZg(baSﬁ)V—A > € (Gsga)vea

g=u,d,s.c.,b g=u,d,s.c.,b

3 - B 3 ,
Qo = 5 (basa)v-a Y e (Gpas)ven, Qo= 5 (basp)v-a Y € (qsqa)v-a
q=u,d.s,c,b g=u.d,s.c,b
(5)

are “electroweak” penguin operators. Here V + A corresponds to ’y#(i + v5) quark cur-
rents, Greek indices are associated with the SU(3)c quark-colour, and the quantities
€, arising in the expressions for the electroweak penguin operators label the electrical
quark charges. Nowadays, the Wilson coefficient functions Cy(u) of the low-energy ef-
fective Hamiltonian Heg, where g = O(m;) denotes the usual renormalization scale, are
known beyond the leading logarithmic approximation [27].

Since A*) is suppressed with respect to A®) by a CKM factor A\*Rj;, where A = 0.22
is the Wolfenstein parameter [1{] and

1 |Vip|
= - 6
NTA (6)

is constrained by present experimental data to lie within the range R, = 0.36 £+ 0.08
[28, 29]. and since furthermore the current—current operators %, Q% may contribute only
through penguin-like matrix elements to b — sc¢ modes, the corresponding transition
amplitudes are dominated to an excellent approximation by the contribution proportional
to A(*) (for a detailed discussion, see [B0]). In the penguin operators, we neglect the
parts of flavour structure different from (¢c)(bs). Then the number of relevant operators
reduces from ten to four and the structure of the decay amplitude simplifies considerably.

In order to implement the factorization hypothesis by factorizing the hadronic matrix
elements of the four-quark operators () into hadronic matrix elements of quark currents,
we have to perform suitable Fierz transformations of the operator basis specified in (3)-
(8). Beyond the leading logarithmic approximation one has to be very careful in perform-
ing such Fierz transformations, as the Wilson coefficients depend both on the form of the
chosen operator basis and on the applied renormalization scheme [27]. Since we do not
use any specific Wilson coefficients to obtain numerical estimates in this paper, we may
perform such Fierz transformations and will use a tilde (7) to indicate Fierz-transformed
operators. For a discussion of the renormalization-scheme dependences arising beyond
the leading logarithmic approximation and their consistent cancellation in the physi-
cal transition amplitudes through certain one-loop matrix elements at p = O(m;), the
reader is referred to Ref. [31].

Let us, in the following two subsections, investigate the structure of the hadronic
matrix elements of the low-energy effective Hamiltonian [Eq. (2)] for the exclusive colour-
suppressed and colour-allowed decays By, — J/v ¢, B — J/¢YK* and By, — D*tD*~,
B — D:+E*, respectively.



II-B Colour-suppressed decays

If we perform a Fierz transformation of the current—current operators specified in (3), the
decay amplitude for B, — J/¥V ((q,V) € {(s,®); (d. K*°); (u, K**)}) can be written in

the following form:

uwmwwmﬁmz%mm (7)

X [ () (T VNIQS (1)1 By) + Cioccl i) ([ (N V(N Q5 et (1) By)

+C5 (1) (T (V (NIQS (1) By) + Ciltee 1) (T NV (NI QS e (1) By)] -

where )\ denotes the helicities of the final-state vector mesons and the “effective” Wilson
coefficient functions are given by

Cip) = Colk) + 3Col) + Colk) + 504 + Colp) +3Ci0lw) — (8)
Crioee(#) = 2[Calp) + Calpr) + Cro(p)] (9)
G5 (k) = Colp) + 3Csli) + Cilp) + 3Cs(1) (10)
Cshoce) = 2[Co(p) + Cs(p)]. (11)

The p-dependence of these Wilson coefficients is cancelled by that of the hadronic matrix
elements appearing in Eq. (7). In deriving the transition matrix element in Eq. (7)), we
have used the relations

Q5 = 304205 o (12)
Qs = 305+ 205 o (13)

with
Q5 = (Caca)yon (Bsss), , (14)
QS e = (eaTises) , (0T5555), (15)

and
Q5 = (CaCa)yya (Bﬁsﬁ)va (16)
Qfoer = (€aTiges)y, , (B-T5555), - (17)

Here the 3 x 3 matrices T are the SU(3)c generators, normalized to tr(T*T%) = §*°/2.
As we will see below. the form of the Fierz-transformed operators given above is better
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suited to analyse the B, — J/9V decays since the .J/1 is related to the (cc) pieces.
The penguin contributions to Cff(u) and Cf (1) are at most O(10%) and O(1%),
respectively, as can be estimated from the values of their Wilson coefficients [27).

If one assumes that .J/1) emerges from the vector parts of the (¢c¢)y14 quark currents
appearing in the operators in Eqs. (14)-(iI7), the matrix elements of Ql(,oct) and Q5(70Ct)
will be equal and the decay amplitude Eq. (7)) can be simplified considerably. Moreover,
within the framework of naive factorization, we obtain (analogous for Qf and Q% )

(JJb(AV
(JJp(\)V \@1

By), = (o) (ee)y |0} (V) [(bs),, | B) (18)
By), = [N (e Ty | 0) (VN | (775),, | B). (19)

where summation over colour-indices is understood implicitly. Consequently, since J/v
is a colour-singlet state, the factorized hadronic matrix elements of the colour-octet
operators given in Eq. (19) vanish.

II-C Colour-allowed decays

In the case of the colour-allowed decays B, — D:"’EZ (¢ € {u.d,s}), the transition
amplitude can be written in a way that is completely analogous to Eq. (7}):

Gy
\/_

X O (DIF (N D (NQ5 (1)1 By) + G5 (1) D (A D (MIQS e (1)1 B,)
+CET (DT N D(NQ5 (1)1 B,) + Ce (1) D (V) D (M) Q4 ot (1)1 By)] -

The corresponding effective Wilson coefficient functions are, however, very different:

(D (ND, (M) [ Hent| By) = —= Vs Vi (20)

C(1) = SCup) + Col) + 5C5() + Calp) + 5Colp) + Croli) — (21)
Cstee(1t) = 2[Cr(p) + Cs(p) + Co(p)] (22)
Ci(k) = 3Cs(1) + Colp) + 5Calm) + Cs(1) (23)
Cel (1) = 2[Cs(p) + C(p)] . (24)

In deriving Eq. (20), we have used the relations
C 1 C Cc
Q1 = gQQ + 2@2,oct (25>

L~ e
g = gQé + 2@6,oct (26)



with

Q5 = (Casa)y y (Bocs), , (27)
Q5 et = (aaTgﬁsﬁ) (b T5C5) - (28)
and
Qi = —2(caLs.) (bsRes) (29)
Qéoet = =2 (CaLT2555) (b, RT25cs) . (30)

Here L and R correspond to the Dirac structures 1 — 5 and 1 + s, respectively. The
D*t meson emerges from the (¢s) pieces of these operators. Since it is a vector meson,
we have

(Di*|eaLsal0) =0, (31)

and hence the factorized matrix element of @g vanishes. Asin Sec. [I-B., the hadronic ma-
trix elements of the colour-octet operators vanish within the factorization approximation
because of their colour-structure.

II-D Observables of the angular distributions

The hadronic matrix element of a generic four-quark operator Q between the state vectors

(Vi(A)V2(X)] and |B,) has the following general Lorentz-decomposition [5;, 6

Vi(MVa(A)[QB,) =

chveb,

Py, Py, + i PViaPVa3] (32)

T’Ilvl?’nv2 mvlmv2

6‘/'17#(/\)*6‘/271/(/\)* [agﬂy +

where the symbols ¢(A) denote the polarization vectors of the final-state vector mesons
Vi and V5. A similar parametrization can be employed to express the transition matrix

elements [Egs. (i) and (20)], yielding

~ Gr
\/_

—I_ C;H(N)Anf( ) —I_ Cz oct( )A?ict( ) —I_ C2+4( )A?—f—4( ) —I_ Cz + 4, oct( )A?f{— 4,0Ct(lLL)i|

=V Vi [ () AL+ Cify () AL (33)

Gy
\/_

—I'Czeﬂ(lu)anf( )—I_Czoct( )anf)ct( )+CZ+4( )Blni‘l( )+CZ+4OCt( )B?i&OCt(Iu)}

b= —EV.,V [C (1) BE + Cef (1) B, (34)



_ Gr
=5

—I_Cfﬂ(/l)Cznf( )—I_Czoct( )Oznf)ct( )+Cz+4( )Czn—lf4( )+Cz+4oct( )Czn—fl—4,oct(lu)}7

where the index ¢ distinguishes between colour-suppressed (i = 1) and colour-allowed
(1 = 2) decays and “f” and “nf” correspond to “factorized” and “non-factorized” matrix
elements, respectively. Note that the factorized amplitudes do not depend on the renor-
malization scale . Since the Wilson coefficients depend on this scale, this already signals
the need for non-factorizable contributions to cancel the p-dependence in Eqgs. (33)—(35)
(see e.g. Ref. [32] for a further discussion of that point).

In the following sections we will analyse the decays B, — ViV, in terms of linear
polarization stales. The corresponding decay amplitudes take the form [23, 33]

AB,(1) » vive) = PGkt - a0t - GE VI AL, b /VE . (30

LV e () Cf + Cety () CLy (35)

where & = py, - py, /(my,my,) and py, is the unit vector along the direction of motion of
Vy in the rest frame of V;. Here the time dependences originate from B,~B, mixing. In
our notation, an unmixed B, meson is present at { = 0.

The linear polarization amplitudes at ¢ = 0 defined by Eq. (38) can be expressed in
terms of a, b and ¢ as follows [B3]:

Ap(0) = —za — (z* —1)b
AH(O) = \/§a (37)
A1(0) =4/2(z2—=1) ¢

At time { = 0, the angular distributions for B, — V;V, depend on the observables
|A0(0)]. |A)(0)], |AL(0)] and on the two phases &, = Arg {A”(O)*AL(O)] and 4, =
Arg[Ap(0)*AL(0)], which are CP-conserving strong phases that are 0 (mod =) in the
absence of final-state interactions (probably not a justifiable assumption for the colour-
suppressed modes). Quantitative estimates for these observables will be given in the
following subsection.

II-E Factorization tests and estimates of observables

While the non-factorizable contributions to a. b and ¢ cannot be calculated at present, the
evaluation of the factorizable contributions is straightforward. Without yet going into the
details of which form factors to employ, the naive factorization assumption yields many
testable consequences. For example, time-reversal invariance forces the form factors
parametrizing quark currents to be all relatively real. Consequently, naive factorization
predicts the same strong phase (mod 7) for the three amplitudes Ay(0), A)(0), AL(0). It
therefore predicts vanishing values of the two observables [17, 19, 20]

Im [A5(0)AL(0)] =0 (38)
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Im [A}(0)AL(0)] =0, (39)

and the equality
Re [A5(0) A (0)] = £|40(0) Ay(0)]. (40)

The breakdown of the naive factorization assumption is unequivocally proved if any of
the three equations (88)-(40) is not satisfied. Detailed comparisons of polarization am-
plitudes in non-leptonic and semi-leptonic decays test additional implications of the naive
factorization assumption. The phenomenology of detailed studies of the full non-trivial
angular distributions is thus much richer than the single factorization test available for a
pseudoscalar decaying into two pseudoscalars [18]. While the above equations represent
general tests of the factorization assumption, it is also useful to examine the predictions
for the observables of the angular distributions for various form factor ansatze.

II-E.1 The colour-suppressed decays B, — J/¢V

The factorized amplitudes for B, — J/¥V with (q,V) € {(s,¢); (d, K*°); (u, K**)} are
given by [18, ¥, 2]

AL = = fromapp(ms, + my) AT (m3,,) = Af
m2 m
B = QMquV(mg/w) = B (41)
mp, + my
of = QfJ/wm?f/meVqu(mz ) = cf
1 mBq‘I‘mV J/ 53

where we have used the notation of Bauer, Stech and Wirbel for the form factors A?QV(qQ)
and VBV (¢?) of quark currents [16]. The parameter f;/, denotes the J/1 decay constant,
which can be determined from the J/¢ — ete™ rate, yielding f;/, = 395MeV.

At present, several methods for obtaining the form factors A1(m?]/¢); Ag(mg/w) and
V(m?]/w) for the B — K™ case are on the market. Using SU(3) flavour symmetry of
strong interactions, the B — K™ form factors can be related to the By — ¢ case. In
Table 1; we have collected the form factors proposed by several authors [16, B4, 35,
and have moreover given the corresponding predictions for the ratios of observables of
the angular distributions. These ratios should suffer less from unknown SU(3)-breaking
corrections than the observables themselves. Note that these ratios are independent of
the Wilson coefficients within the factorization approach.

The quantity

I'o(0) | Ao(0)[?
Lo(0) + I'7(0) — [Ao(0)[* + [Ay(0)[* + [AL(0)[?

(42)

describes the ratio of the longitudinal to the total rate at ¢ = 0. Although CDF [3G]
claims to have measured this quantity, from their untagged data sample, to be 0.56 +



Observable BSW [I6] | Soares [34] | Cheng [B5]
APR (m3,,) 0.46 0.42 0.41
APR(m5,,) 0.46 0.43 0.36
VBK*(mg/w 0.55 1.08 0.72
| A)1(0)]/] Ao(0)] 0.81 (0.77) | 0.82 (0.78) | 0.75 (0.70)
|A1(0)]/]A0(0)] 0.41 (0.40) | 0.89 (0.88) | 0.55 (0.54)
I'0(0)/(L'o(0) + I'7(0)) | 0.55 (0.57) | 0.40 (0.42) | 0.54 (0.56)
3 T T T
2 0 0 0

Table 1: Predictions for form factors and B, — J/v¢¢ (B — J/¢p K*) observables.

0.21(stat.)T00i(syst.), their claim is valid only if the CP-odd component of B, — J/v¢
is negligible, or if the lifetime difference AT can be ignored.

The 274t columns of Table I, are calculated within the framework of naive fac-
torization, i.e. we have inserted Eq. (41)) into Eqs. (83)-(85) and have omitted the “nf”
terms in order to calculate the amplitudes in Eq. (87).

The form factors given by Soares [34] are obtained from D — K[, data by using
heavy-quark symmety relations [37] and assuming the monopole momentum-transfer
dependence of the BSW model [il6]. Some more form-factor models and their predictions
are discussed in [38]. Note that the small difference between the B, — .J/v)¢ and
B — J/¢¥ K* results in Table 1; is related to phase-space effects and not to any SU(3)-
breaking effects in the corresponding hadronic matrix elements.

Looking at Table i, we observe that the “factorized” predictions for |A}(0)]/|Ao(0)]
are rather stable (= 0.8), while |A(0)|/|Ao(0)| depends strongly on the method used
for obtaining the form factors. A common feature of all results is §; = 7 and d; = 0.
Therefore a measurement of non-trivial phases ¢; and 4, would imply the presence of
strong final-state interactions and non-factorizable contributions.

Whereas the use of the factorization assumption is very questionable in the case of
the channels By — J/¢ ¢ and B — J/¢Y K*, flavour SU(3) symmetry is probably a good
working assumption. Thus all the hadronization dynamics of the By, — .J/1¢ decay,

such as the phases d; and d; and magnitudes of the amplitudes

can be obtained from the B — .J/1¢) K* modes.} This approach may be helpful to extract
the CKM phase ¢ckm (see Eq. (1)), as we will see below.

LAlthough those SU(3) relations are mostly trivial, one subtlety due to quantum-coherence must be
emphasized. Because of the SU(3) relations in the unmixed amplitudes

Af(Bs = J/Yo) = Af(B — J/YK*) ., where f=0,|. 1

the magnitudes of the amplitudes for B or BF decays into CP-even or CP-odd .J/i:¢ final-state

9



The factorization assumption should work much better for the transitions B, —
Dt D and B — D**D". Therefore the results presented in the following subsection
should be more reliable than those summarized in Table 1,

II-E.2 The colour-allowed decays B, — D:*‘EZ

Using again the same notation as Ref. [iI6l], we get the following “factorized” results for

the modes B, — D7+ D (q € {u.d.s}) [£3. 24 28]

B,D*
Al = — fpsmpe(mp, + mps) Ay’ q(m%;ﬂ): A5 =0
f fDé‘m%me;‘ BqDjy, 9 f
By =2————2 A" " (mp.), Bg=0 (44)
mp, + Mmp;x ¢
*T)’L2 « T H* *
Cf = oIDEMEDS i ci=o.

mp, + Mmp;x

The parameter fp« is the D} decay constant. The spin symmetry of HQET implies fps ~
fp.. A recent compilation of measurements of fp. from Dy — uv gives (241 + 21 4+ 30)
MeV [34].

In the case of B, — EZ transitions we have rather tight restrictions from HQET (for
reviews, see for example [25]) for the corresponding form factors. The following ratios
turn out to be useful to implement these HQET constraints [40]:

2 BD*( 2
q VPl
Ry(w) = |1 — . (45
' ) (mBq + mD;)2 AJIBD (qz) )
[ 2 1 sBD*( 2
q Ay (q°)
Ry(w) = |1 — . (46)
where Ri(w) and Ry(w) are defined in such a way that we have

for all values of w in the strict heavy-quark limit. The kinematical variable w is defined

by

w=—o i 7 (48)

configurations, respectively, are a factor of v/2 larger than their corresponding B — J/¢K* ones. [Here
the K™ is seen in a flavour-specific mode. If K* is neutral and is observed as 79K, quantum coherence
in B® — B® must also be taken into account.] If the CP-even processes dominate, then

T(BE = J/¢é) ~ 2T(B — J/¢K*) .

Studies of Bs versus B production fractions can thus be undertaken, since the lifetimes will be precisely
known.

10



Observable BSW HQET i« | HQET 1\ preak.
ABDY(m3,.) 0.72 0.70 (0.68) |  0.70 (0.68)
ABDT(m%,) 0.76 0.76 (0.75) |  0.54 (0.53)
VB (mi,.) 0.79 0.76 (0.75) | 0.89 (0.88)
|A(0)]/]Ao(0)] 0.90 (0.90) | 0.91 (0.91) |  0.81 (0.80)
|AL(0)]/]Ao(0)] 0.32 (0.32) | 0.32 (0.33) |  0.33 (0.34)
To(0)/(To(0) +T7(0)) | 0.52 (0.52) [ 0.52 (0.52) |  0.57 (0.57)
o1 T T T
5y 0 0 0

Table 2: Predictions for form factors and B, — Dt D*= (B — D**D") observables.

The value of the momentum transfer ¢* relevant for Eq. (4%) is ¢* = m%.. The form

factor APP"(¢?) is usually written as

. mp, + mp; ¢
AT () = {1 1 (49)

2 /mquD;

where h 4, (w) corresponds to the Isgur—Wise function in the strict heavy-quark limit and
can be written as

2] hAl (w)7

mp, + mD;)

ha,(w) = F(1) [1 = p4, (0 = 1) + O((w — 1)?)] . (50)
The current status of the normalization F(1) and of the “slope parameter” p% has been
summarized recently by Neubert in Ref. [4U0]. The form factor APP"(¢?) is protected
by Luke’s theorem [41] against 1/mg corrections at zero recoil. The other form factors
ABD™(g%) and VBP"(¢?) are not protected by this theorem. From calculations based on
HQET one expects a rather weak dependence of Ry(w) and Ry(w) on w and therefore

Ri(w) =
Ry(w) =

Ri[l + O(w —1)]
Ro[1 + O(w —1)].

(51)
(52)

In our analysis we will neglect the w-dependence completely.

Following these lines we have calculated the results for the form factors and ratios
of observables, which should receive smaller SU(3)-breaking corrections than the ob-
servables themselves, summarized in Table 2. For completeness we have also given the
results obtained by applying the BSW model [18] in the 2"? column. In order to calculate
the 3™ and 4" columns, we have used F(1) = 0.91 and p%, = 0.91 [4U]. The columns
denoted by HQET ;. and HQET , },cax. correspond to Ry = Ry = 1 and Ry = 1.18,
Ry = 0.71, respectively, where we have employed the results by Neubert [40] to take into

stric
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account HQET symmetry-breaking corrections. Within the factorization approximation
we obtain the following simple expressions for A;;(0)/A(0) and A;(0)/Ae(0) in terms of
the HQET parameters:

A0 _ 5 lmD (””52 - 1) Ray(w) — x]_l (53)

Ap(0) - mp, \w+1
A1(0) mp» 2 —1 A||(0)
= — < R . 54
40(0) lm ( wtl ) 1“”)] 40(0) (54
where the kinematical variable
m2 - m2 *® m2 *
T = Bq Dq DS (55)
QmDZmD:

has been defined after Eq. (35).

If we compare Table 2 with Table T, we note that the results for the observables
depend much less on the way of obtaining the form factors. Also the “old” BSW model
is in rather good agreement with the HQET predictions, which is quite remarkable.
Therefore the results given in Table ¥ are more reliable than those collected in Table ;. In
this respect it is also important to note that the non-factorizable contributions appearing
in Eqgs. (83)-(35) should play a minor role for the colour-allowed decay class and that
01 = m and d; = 0 is expected to hold on rather solid ground. Because of the latter
feature, CP-violating effects arising in untagged B, — Dt D*~ data samples should be
a promising way to extract the weak phase ¢cxm (see Eq. (1)), as has been outlined in

detail in Ref. [§].

III The angular-moment analysis

The main focus of this section is the efficient determination of the observables discussed
in Sect. TI-Di and I1-H. This can be accomplished by an angular-moment analysis [iL].
In this approach. the observed data are weighted by judiciously chosen functions, which
project out any desired observable. Whereas Ref. [il] determines the moments for a
few choice angular distributions, using spherical harmonics, this paper indicates how to
determine suitable weighting functions for all kinds of angular distributions. using only
orthogonality arguments (without invoking spherical harmonics).

Let us denote the angular distribution of a given decay by
[(©,a5t) =36 (a;1)g"(0), (56)

where a represents all the parameters that are independent of the kinematics, which is
described by certain decay angles. In general, the physical process involves an arbitrary
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number of such angles denoted generically by ©. For the examples considered in this
article, ¢ runs from 1 to 6, and we have

a= {FH Iy, Am, |A0(0)| |A||(O)| |AJ-(0)| 51: 52: QDCKM}

All the quantities of interest are encoded in the time evolution of the observables b()(a; 1).
In the following discussion the a- and t-dependence of the b()’s is implicit wherever not
explicitly stated.

The usual method for extracting b()’s is to use an unbinned mazimum likelihood fit
[4]. Performing such a fit for a given quantity requires some idea of the values of the other
quantities. When one deals with limited statistics, one may want to exploit alternative
methods that completely decouple the extraction of one observable from all the others.
Luckily such a method exists, the angular-moment analysis.

If we can find a weighting function w() (@) for each i such that

i 0 fori #Fk
[1D61ut(©)g9(0) = 5, = { Ty (57)
then the b()’s can be obtained directly from
p(i) :/[D(a]w“)(@)fexpt(@) : (58)

Here [DO] denotes the appropriate measure for integrating over all angles 0, and fexpt(©)
denotes the observed full angular distribution. For a small number of events (N), the
form of the function fexpe(©) will not be known, but only the values for © will be known
for each event. In that case the above equation reduces to

b :% 3 w?(0). (59)

events

These b()’s can then be used directly for studying their (a;¢) dependence.

That w®)’s can always be found for any angular distribution follows from the linear
independence of the ¢{)’s (they have to be independent for the angular distribution to
be legitimate). The vector space V; spanned by all ¢\)’s for j # k is a proper subspace
of the vector space V spanned by all ¢(’s. Then there exists a one-dimensional vector
space W such that ¥V = V., & W and V; L W. Here the scalar product is defined as
vy - vy = [[DO]v1(0)vy(0); w*) is then the element of W with proper magnitude.

For a given set of ¢(V’s, the choice of w()’s need not be unique. We can always
take any vector space V' O V and the corresponding projection space W' such that
V =V & W and Vi, L W'. Then any w) ¢ W with w® -g(k) = 1 will serve our
purpose.

We now indicate an explicit procedure for finding a set of weighting functions ap-
plicable to any given angular distribution. For a theoretical angular distribution of the
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form f = Xn: b gl) (the dependence on angles and time is implicit),
i=1

w® =37 Xijg¥) (60)
7=1

is a proper weighting function, where the n? unknowns J;; are solutions of the n? simul-
taneous equations

dik = Z Aij /[DG]Q(j)Q(k)- (61)
7=1

The existence of such a solution follows from the vector-space arguments given earlier.
The w’s need not be restricted to the vector space spanned by the n vectors ¢M)’s, in
which case the unknowns A;; will be underdetermined and more than one set of w(’s
will serve our purpose.

It is crucial to observe that the weighting functions w? depend only on the angular
terms and not on the values of the observables ). The implication is that no matter how
complicated the detailed angular distribution, there always exists an angular weighting,
which projects out the desired observables alone. We therefore recommend the use of
moments whenever one wishes to extract observables from measured angular distribu-
tions, such as in weak decays of baryons [2] or pseudoscalars [P — Vv, X jlv, V'V, etc.],
or strong and electromagnetic decays [3]. The utility of this approach cannot be overem-
phasized. For instance, the moment analysis allows the study of the ¢* dependence of
each of the observables separately in the process P — V/v. This could prove useful for
the extraction of form factors and the determination of CKM elements, e.g. V., and V.

We note that there exist many legitimate choices of weighting functions. The opti-
mal choice depends on the numerical values of the observables [i] and on the detector
configuration.

IV The angular distribution of the colour-suppressed

decays B, — J/¢ ¢ and B — J/pK*

In this section we give the angular distribution of the decays B — J/¢ ¢ and B —
J/¥ K*, their time-dependences and appropriate weighting functions.

IV-A The decay B, = J/¢(—= 1T]7)p(— KTK™)

An analysis of this process has been performed in [33] in terms of linear polarization
states of the final-state vector mesons. The corresponding decay amplitude has the same
form as Eq. (36). Since the amplitudes A and A} are related to CP-even and CP-odd
final-state configurations, respectively, they differ in time evolution as well as angular
distribution. The angular distribution can be used to separate these components and
their time evolution can be studied individually.
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The differential decay rate at time ¢ as a function of a generic variable = will be
denoted by

dU(t, z) 1 d*N(t)

dz N(t) dzdt

Consequently the normalized number of decays in the intervals [¢, ¢ + At] and [z, z + Ax]
is given by

(62)

dU'(t, z) 1 d*N(t)
%A At -
de 7 N(t) dedt

AzAt. (63)

IV-B Tagged decays

In the case of By — J/1 ¢, the three-angle distribution for the decay of an initially
present (i.e. tagged) B, meson takes the form [B3]
d®T[Bs(t) = J/(— T )p(— KTK7)] 9
o
dcos8 dg dcosp 327

{ 2| Ao(t)|* cos® (1 — sin® @ cos® ¢)

+sin® {| A (1)[*(1 — sin® fsin® ) + [AL(1)[*sin® § — Im (Aj()AL(t)) sin 20 sin o }

+ % sin 2¢0{ Re (Aj(t)A)(t))sin®Osin2¢ + Im (Aj(t)AL(t))sin20 cos ¢ } } . (64)
Throughout this section we will apply the same conventions as in Ref. [33], i.e. ¢ moves
in z direction in the .J/t¢ rest frame, the z axis is perpendicular to the decay plane of
¢ — KTK~, and p,(K*) > 0. The coordinates (0, ¢) describe the decay direction of [*
in the J/¢ rest frame and v is the angle made by p(K*) with the z axis in the ¢ rest
frame. With this convention,

_ _ Py+—Py(PyPg+)
p(b' |p}(+_p¢(p¢'p}(+)|/

Z=XXY
sinf) cosg = pg+ X, sinf sing = pg+ -y, cosl =pp+ -2 . (65)

Here. the bold-face characters represent unit 3-vectors and everything is measured in the
rest frame of J/1. Also

cos ) = =P+ - Plryys (66)
where the primed quantities are unit vectors measured in the rest frame of ¢.

The time dependence of the right-hand side of Eq. (64) can be read off from Table g,
where Am = myg — my > 0 is the mass difference of the mass eigenstates BSH and
BL of the B, system and T = (I'y + I';,)/2 denotes their average decay width. The
phases §; = Arg(A;(0)*AL(0)) and 6, = Arg(Ao(0)*AL(0)) are CP-conserving strong
phases. In the absence of final-state interactions — probably not a justifiable assumption
for By — J/¢¢ — they are expected to be 0 (mod 7).

On the other hand, the quantity d¢ = ¢dcxm (see Eq. (1)) is a CP-violating weak
phase, which is introduced through interference effects between B,~B, mixing and decay
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Observable Time evolution

| Ao(t)]2 | Ao(0)]2 [~ —e—ﬂ sin(Amt)8¢
ENGIE |AY(0)[* [¢7T# — e sin(Amt)d¢
|AL(1)]2 |AL(0)|2{ Tt 4 e~ T sin(Amt)dg)

A;(t)A” 1)) | [A40(0)[|Ay(0)] cos(b, — 6;) [e7T2* — et sin(Amt)5¢]
JAL()) | 1AYO)IAL(0)] [T sin(dy — Amt) + L (e7Tt — e=T2t) cos(6;)d9)
(A(*)(t)AL(t)) | Ao(0)||AL(0)] [T sin(dy — Amt) + L (e7Trt — e7T2t) cos(6,)d9)

Table 3: Time evolution of the decay By, — J/¢(— [TI7)¢p(— KTK™) of an initially

(i.e. at t = 0) pure By meson.

Observable Time evolution

| Ao (1)? |Ao(0)]2 [e7 T2t 4 =Tt sin(Amt)dp

|le(t)|2 ENQUIE 6_rLt—|-6_rts1n(Amt)5¢

AL | JAL0) [e7Ta" — e Trsin(Ami1)dg]

Re(Ag(1)Ay(t)) | [Ao(0)]]A)(0)] cos(dz — 61) [e~To" + e sin(Amt)dg)

Im(A5 (1) AL (1)) —|A||(())||AL(O)|{e‘rtsm(d.l Amt) — L (e7Tt — e=T1t) cos(dy)d0)]
Im(Ay(1) AL (1)) | = Ao(0)| AL(0)] [T sin(8y — Amit) — & (e7Tt — e=T11) cos(8,)d0)|

Table 4: Time evolution of the decay B, — J/¢(— [TI7)¢(— KTK™) of an initially
(i.e. at t = 0) pure B, meson.

processes. It can be expressed in terms of elements of the CKM matrix [, 12] as

VisVig ViV

exp(1d¢) = Vil Vol

(67)

and is very small, as can be seen easily by applying the Wolfenstein expansion of the
CKM matrix [10]. At leading order in this expansion d¢ vanishes. However, taking into
account higher-order terms (for a treatment of such terms, see e.g. Ref. [42]) gives a
non-vanishing result [13, 43]:

5 = 2X\7n = 0(0.03). (68)

Consequently d¢ measures simply the CKM parameter 7. Note that A = sinf¢c = 0.22 is
related to the Cabibbo angle. Useful expressions for ¢ can be found in Ref. [13], where
the following relation has been derived:

§¢ = 2X* Ry sin . (69)
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Here 7 is one angle of the “usual” unitarity triangle [44]. Consequently, if the CKM-
parameter R; (defined by Eq. (B)) is used as an input, d¢ allows a determination of ~.
That input allows, however, also the determination of 1 (or 4) from the mixing-induced
CP asymmetry of By — J/¢Ks measuring sin 23, where 3 denotes another angle of
the unitarity triangle [44]. If one compares these two results for 5 (or v) obtained from
B, and By modes, respectively. a test of whether the B,~B, and B;—B,; mixing phases
are described by the Standard Model, or receive additional contributions from physics
beyond that model can be performed. Needless to note, a measurement of a value of
d¢ much larger than the Standard Model expectation of O(0.03) would anyway be a
striking signal for new physics in B,~B, mixing.

An interesting interpretation of §¢ has been given in Ref. [dH]. There it was shown
that d¢ is related to one angle in a rather squashed (and therefore “unpopular”) unitarity
triangle. Note that terms of O(d¢*) have been neglected in Table 8.

The angular distribution for an initially present B, meson is given by

ET[Bs(t) = J/¢(= 17 )d(— KT K7)] 9

2[A,(1)]? 2 1 —sin?0 2
dcos @ dg dcos O<327T[ | Ao(t)]” cos™ 9( sin” 6 cos” ¢)

+ sin® {|A)(1)[*(1 — sin® @ sin® ) + [AL(1)[*sin®  — Im (Zﬁ(t)ZL(t)) sin 20 sin ¢ }

+ % sin 2¢6{ Re (Ag(1)A)(1))sin® fsin 2 + Tm (Ag(¢)AL(1))sin20 cos ¢ } } . (70)
where the angles are again defined by Eqs. (b5) and (66). The time dependence of
this rate can be obtained easily with the help of Table §, where terms of O(d¢?*) have
been neglected, as in Table 3. In calculating Tables 3 and ¥ we have used the fact
that B, — J/1v ¢ (and B, — J/v ¢) is dominated to excellent accuracy by a single
weak amplitude, as we have seen in Section . Therefore we have to deal only with
mizing-induced CP violation and there is no direct CP violation, i.e. [A(0)| = |Ag(0)],
(0)] = [A4y(0)] and (7, (0)] = |AL(0)]

It is important to note that the mass difference Am can be extracted from time-
dependent analyses of tagged By — .J/i¢ ¢ data samples [33]. Previous experimental
feasibility investigations for the extraction of Am focused entirely on tagged flavour-
specific modes of B; mesons [46, A7].

IV-C Untagged decays

Combining Tables § and 4. we find that the time evolution of the untagged data sample
for f=J/Y(—= ITI7)p(— KTK™) is given by

FIW] 0
dcos@ dg dcosyp 167

2| Ao(0) e 2 cos? (1 — sin® 0 cos? )

+sin® ¢ {]4)(0)]?e "= (1 — sin® Osin® ) + | AL (0)]%e ™" ' sin® 6}
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—I—% sin 21 {|A0(O)||AH(O)| cos(8y — 81 )e " i sin? fsin 299}

1
—|—{7§|A0(0)||AL(0)| cos &y sin 2¢) sin 26 cos ¢

— |4;(0)|]AL(0)| cos 8 sin® ¢ sin 26 sin Lp}% (e_rHt — e_rLt) 599] . (71)

Remarkably the time dependence of the untagged rate does not depend on the mass
difference Am. This feature has been discussed within a more general framework in
Ref. [[4]. Consequently, whereas I';, and I'y can be determined from the untagged
data sample, the extraction of (Am)p, requires tagging. As has already been pointed
out in [B], because of the lifetime difference (AT')p,, the untagged decay rate [Eq. (71)]
develops an interesting contribution for ¢ > 0, which is proportional to the CP-violating
weak phase d¢. It originates from the imaginary parts of the interference terms between
Ai(t) (AL(t)) and Aj(1) (Zﬁ(t)), Ax(t) (Ay(t)). If AT = 'y — I' is in fact sizeable, we

are optimistic that it will be possible to measure this effect.

IV-D A closer look at the one-angle distribution
The full three-angle distributions for tagged and untagged B, — J/¢(— (TI7)d(—

K*K™) decays discussed in the previous subsections are quite complicated. A much
simpler case arises if we integrate out the two decay angles ¢ and ¢ in (64), leading to
the following one-angle distribution [33]:

dI'(t)
dcos

Let us first briefly illustrate the angular moment analysis outlined in Section {1l for this

o (|Ao(t)|? + |A||(t)|2)§(1 + cos® 0) + |AL (1) %sin2 6. (72)

transparent one-angle distribution. In this case, we have

3 3
Mgy = = 2 (9} = Z sin?
g (9)—8(1—|—c0s 9), g (9)—4sm 0. (73)
Consequently, if we choose
wV(0) =5cos’—1 and wP(h) =2 —5cos? 0, (74)
the orthogonality relation
+1 .
/ d(cos 0)w(8)g™ (0) = 5y (75)
-1
is satisfied, and we obtain immediately
[ Ao(t)* + [Ay(t)]* o (5 cos 0; — 1) (76)
|AL ()] o 2(2—5C0S2 0;) , (77)

k3
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where the summation is over all the events in the same time bin as ;.

In the case of the untagged one-angle distribution, the Amt oscillations proportional
to the CP-violating weak phase d¢ cancel, and the terms (v¥6) and (77) evolve like
(|Ao(0)]* + [A(0)[*)e~ "= and |AL(0)[*e " #", respectively. A fit (now with only one
parameter in each time evolution) gives the decay widths I';, and 'y of the CP-even and
CP-odd B, mass eigenstates, as well as the CP-even and CP-odd rates [Ag(0)|*4|A;(0)?

and |AL(0)]?, respectively. For limited statistics, one may want to use time moments [4§]

:/OOC di " f(1). (78)

The weighting-functions method is thus an alternative to the two-bin method suggested in
[l:. 33]. Note that we do not need any a prioriinformation about the relative magnitudes

of CP-even and CP-odd amplitudes.

In the case of tagged measurements, the integrated decay rates

I'(t) = /+1 d(cos 0) dr(t) (79)

—1 cos 0

evolve in time for intitially present B, and B, mesons as
L(t) o (JAo(0)* + [Ay(0)?) €T+ 4 [AL(0) 27!
— (JA0(0)2 + | Ay (0)* — | AL(0)[?) e " sin(Amt) 66 (80)
and
T() o< ([Ao(0)]* + [Ay(0)[*) e "= 4 [AL(0) 2T

+ (J40(0)2 + |4y (0)* = |AL(0)[2) € sin(Amt) 66, (81)

)
respectively, where we have used Tables B and 4. Consequently, the time-dependent CP
asymmetry arising in the decay Bs — J/v ¢ takes the following form:

I -T()

I(t) +T(t)
[A0(0)F + [A4(O)F — [AL(O)* et sin(Amt) §

(o) 1 AYO)) T 1 [Au(o)petat ¢ 000 ()

acp(Bs(t) = J/¢ ¢) =

Using the quantitative estimates collected in Table i, we obtain
[AL(0)]”
[40(0) + [ A (0) |2

Although these estimates suffer from large hadronic uncertainties, they indicate that it
may not be justified to neglect the CP-odd contributions proportional to |A(0)|* in the

=0.1...0.5. (83)

time-dependent CP asymmetry (8%).
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Observables: b¥)(1) w (0, ¢, 1)
| Ag(4)? 5[5(cos? @ — sin® f cos 2¢) — 1]
| A ()7 1[5(cos? 0 + sin® 0 cos 2¢) — 1]
|AL(4)? 2 —5cos? b
Re(A5()Ay(1)) 5 8in(2¢)) sin(2¢)
Im(Aj(£)AL()) —>sin(26) sin ¢
Im(A (1) AL(L)) % sin(2¢) sin(26) cos ¢

Table 5: A set of weighting functions for extracting the observables b()(¢) of the decays
Bs — J/Y(= 1T 17)p(— KTK™) and B — J/Y(—= TI7)K*(— 7 K).

The coefficient of sin(Amt) §¢ in (82) can be experimentally determined [for instance,
from the untagged studies outlined above]. Thus the fundamental weak phase §¢ can
be cleanly extracted once the Amt oscillations are resolved. Future experiments at the
Tevatron and the LHC should be able to achieve this goal. Once the Amt oscillations
are traced, one can alternatively perform a tagged. one-angle, time-dependent study to
separate the CP-even and CP-odd contributions, from each of which d¢ can be directly
extracted. The efficient extraction of the various observables depends on the detector
configuration, so that other possible variations should be considered. The full angular
distributions contain, of course, all the available information, and will be determined
eventually.

In order to determine d¢ from untagged Bs — J/1 ¢ decays, where the Amt oscil-
lations cancel, the observables corresponding to the interference terms Im ( ﬁ(t)AL(t))
and Im (Aj(t)AL(t)) must be studied. Valuable information about CP-conserving strong
phases can also be obtained, thereby sheding light on the hadronization dynamics of
Bs — J /v ¢ and the issue of “factorization”, which predicts trivial strong phases. A set
of weighting functions applicable to this case is given in Table 5.

IV-E The decay B — J/¢(— ITI7)K*(— 7K)

The angular distribution for B — J/¢(— [TI7)K*(— 7K) takes the same form as
Eq. (64) if we use the decay angles specified in Eqs. (65) and (66) with ¢ replaced by
K* and KT replaced by the strange meson.

Using the same angles for B — J/¢(— [TI7)K (— mK), we obtain the analogous
angular distribution to the B, — J/¢(— [T17)p(— K+K~) case given in Eq. (70).
The same weighting functions (see Table ) can therefore be used to determine the
corresponding observables in those decays. The comparison of the observables in these
two modes would give us an idea of the extent of SU(3) breaking.

If the K*° is observed to decay to the CP eigenstate 7°K’s, the time evolution of the
corresponding three-angle distributions [Eqs. (64) and (¥U)] is given in Tables § and
7. respectively [l]. Tables § and 7 assume that the unmixed amplitudes depend on a

1
[
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Observable Time evolution

| Ag(t)? | Ao(0)[2e=11 [1 + sin(23) sin(Amt)]
| A ()7 |A(0)]2e™ " [1 + sin(23) sin(Amt)]
|AL(¢)] |AL(0)]2e7 T [1 — sin(23) sin(Amt)]

Re(Aj(t)A)(1) | |Ao(0)]|A;(0)] cos(dz — &1)e™" " [1 4 sin(283) sin(Amt)]
(Aj()AL()) |A;(0)[]AL(0)|e~"" [sin(d1) cos(Amt) — cos(23) cos(dy) sin(Amt)]
(As()AL()) | |A0(0)]|AL(0)|e ! [sin(d,) cos(Amt) — cos(23) cos(8y) sin(Amt)]

Im
Im

JAL
)AL

Table 6: Time evolution of the decay By — J/¢(— [TI7)K*°(— 7°Ks) of an initially
(i.e. at t = 0) pure B, meson.

Observable Time evolution
TP [ A0 P [T~ sin(23) sn{Am)]
A | A0 1 — sin(25) sin(Ami)]
|_A*L(tﬂ2 |AL(0)]2e~T 1 + sin(23) sin(Amt)]
Re(ég(t)iln(t)) |Ao(0)]]A4;(0)] cos(d3 — &1 )e ™ [1 — sin(23) sin(Amdt)]
Im(ﬂ!(t)éL(t)) —[A;(0)[JAL(0)[e™"" [sin(d1) cos(Amt) — cos(283) cos(d;) sin(Amt)]
Im(A (1) AL (1)) | —|Ao(0)]|AL(0)]e~T [sin(8y) cos(Amt) — cos(23) cos(8y) sin(Amt)]

7*0

Table 7: Time evolution of the decay By — J/v(— [*I7)K (— 7°Ks) of an initially
(i.e. at t = 0) pure B; meson.

single, unique weak phase, which is justified within the CKM model (see Section II). In
these tables, I' and Am > 0 describe B;~ By mixing. They are related to each other
through the mixing parameter x4 = (Am/I')y . In analogy to Eq. (§7), mixing-induced
CP violation in By — J/i(— ITI7)K*(— 7°Ks) [Il, #Y] measures a weak phase 3,
which is given by Vo e
-3 tdVip VesVeb
exp(—2:0) AR (84)
Within the Wolfenstein expansion [10], 3 is equal, to a very good approximation, to the
angle (3 of the “standard” (non-squashed) unitarity triangle [44]. Therefore we have not
distinguished between 3 and 3 in Tables § and 7.
Whereas the rates for tagged B; — J/¢¥Ks and By — J/¥Ks events, which are
given by

I[Ba(t) = J/Ks] oc |A0))%e " [1 — sin(28) sin(Amt)] (85)
[[Ba(t) = J/¥Ks] o< |A(0)]2e " [1 + sin(23) sin(Amt)], (86)

allow only the determination of sin(23) and of (Am, I')g,, an analysis of the tagged

d’
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three-angle distribution for the decay By — J/v¥(— [TI7)K*°(— 7°Ks) (and its CP-

conjugate) yields valuable additional information from the interference terms, as can be
seen by looking at Tables & and 7

o Re(Aj(1)A)(1)) provides additional information on cos(dy — d1).

o Im(Aj(1)AL(L)). Im(AG(L)AL(1)) provide additional information both on sin d; ()
and cos dy(z) and on cos(23). The latter quantity plays an important role to resolve
discrete ambiguities in the determination of the CKM angle 3 [50].

Predictions for these observables are given in Table il.

The largest data sample for By — J/¢¥K*° is, however, not for K** — 7Kg, but
for K** — 7= K*. The complete angular distributions and time dependences for the
relevant decay modes are given in Appendix A. For charged B decays, the corresponding
time and angular distribution is obtained by going to the isospin - related mode and
setting Am = 0. Experimental studies of these decays are very important. since they
probe sin(dy(z)) and non-factorizable terms through the observables corresponding to the
left-hand sides of Eqs. (88)—(40) [I7, 19, 20]. The relevant information about d; and
0y extracted from these B data samples, “tagged” at the time of decay, can be related
to By — J/¢ ¢ by using SU(3) flavour symmetry of strong interactions, and allows a
determination of d¢ from the time evolution of even the untagged rate given by Eq. («'l})
[§]. This approach does not involve the assumption of factorization, just SU(3) symme-
try arguments. Unfortunately the corresponding SU(3)-breaking corrections cannot be
treated in a quantitative way at present.

V  The angular distribution of the colour-allowed de-
cays B, — D*D*~ and B — D**D"

The decay of D:* is predominantly electromagnetic, i.e. D:* — D¥~, whereas D"
decays also strongly to Dm. Therefore the angular distributions of the two decay modes
discussed in this section are quite different from each other. The first step in the decay
chain is, however, still of the form P — ViV, (as in By — J/v¥¢) and consequently
the terms Ap, A). AL retain the same meanings as in Eq. (36) and the same physical
significance as in Sect. [V

V-A The decay B; — Dt (— Df~)D! (— D;~)

Applying the same convention as in Ref. [51}], we define the coordinate system as follows:
in the rest frame of the decaying B, meson, let the directions of motion of D** and D*~
be z" and z”, respectively. In the plane transverse to z’ (or z”), choose any direction as
y' and y”. The directions of z’ and z” are then specified uniquely via 2’ = ¢y’ x 2’ and
" = y" x 2", Thus, '’ and z” point in opposite directions. Then (6, ¢') is the direction
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(1) w0, 0", x)
| Ag|? (—45/92)C(0',0") + (245/92) sin? 0’ sin? "

10/23 . — (45/46) sin sin + (25/4) sin sin cos 2
|A”|2 ( / )0(0/0//) ( / ) : 20/ : 20// ( / ) : 29/ : 20// %
n 10/23 . — (45/46) sin sin —(25/4) sin sin cos 2
Au? | (10/23)0(0.6") — (45/46) sin® 0 sin® " — (25/4) sin§' sin® 6" cos 2
Re(AgA4)) 25v/2sin 0 sin 8" cos @' cos 0" cos

Im(AjAL) —(25/4)sin* @’ sin* 0" sin 2y
Im(AGAL) —25/2sin 0’ sin#” cos ' cos " sinx

Table 8: A set of weighting functions for B, — D**(— Df~)D: (— D;~). Here
C(0'.0") = (1 4 cos? #')(1 + cos? §").

of D in the rest frame of D** in the (2’ — y’ — 2') coordinate system, whereas (8", ")
is the direction of Dy in the rest frame of D?~ in the (2" — y"” — 2") coordinate system.

Since the choice of directions of y" and y” was completely arbitrary, only the com-
bination xy = ¢’ 4+ ¢” of ¢’ and ¢” is physical and these two angles will appear in the
angular distribution only through y. In terms of the momenta of particles. the angles

0'.0" and y can be defined as:

cos ) = p’Dzr “Ppr+ ; €08 §" = p”D; “Ppr-
sin @' sin#” cos y = — cos @ cos 9" — p'Dj . p"D:
sin @' sin " sin y = (p'D:r X p/’D;) “Ppr+- (87)
The bold-faced quantities are unit three-vectors. The unprimed quantities are measured
in the rest frame of By, single-primed quantities in the rest frame of D**, and double-

primed quantities in the rest frame of D}~.
In terms of these angles, the angular distribution takes the form

d*T
dcos @ dcos" dy .

9
6l {2|AO|2 sin® @’ sin® "
T

1
—|—§|A|||2[(1 + cos? 0')(1 + cos? 0") + sin* @' sin? 0" cos 2x]
1
—|—§|AL|2[(1 4 cos® 0')(1 4 cos* 8") —sin® §’ sin® 0" cos 2x]
— Im (A}AL) sin? @’ sin? 0" sin2y 4+ 2v/2 Re (AgA)) sin @’ sin6” cosb’ cosb” cos x

—2v2 Im (AjAL)sin@ sin@” cosf cosf” sin X} , (88)

where the time dependence of all observables is implicit. It can be read off from Table 3.
The weighting functions are listed in Table §.

The angular distribution for the CP-conjugate process B, — D *(— Df~y)D:=(—
D3 ~) is given by
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T 9
dcos 8" dcos 8" dy > Gar

{2|A_0|2 sin® @’ sin® 0"
1
—|—§|A|||2[(1 + cos” 0')(1 4 cos? 0") + sin® §' sin® 0" cos 2x]
1
—|—§|AL|2[(1 + cos® 0')(1 4 cos* 8") —sin® §’ sin® 0" cos 2]
— Im (%THKA—L) sin? @’ sin?6” sin2y + 22 Re (A_O*A_H) sin @ sin 0" cos@ cosf” cosy

— 22 Tm (A, AL)sin @' sin” cos#’ cosd” sin X} . (89)

The time evolution of the various quantities is the same as in Table 4.

As in the case of By, — J/¢¢, the decay By, — D*T D*~ is dominated by a sin-
gle weak amplitude. Therefore the analysis of the tagged and untagged decays out-
lined in Sect. IV-B and IV-C remains valid by replacing (J/¢. ¢, [T, 7. KT, K~) —
(D, D=, D}, ~, D;,~). Since this process is colour-allowed, factorization is expected
to hold more strongly.

V-B The decay B — D**(— D#~)D"(— Dn)

Whereas the decay of the D** meson is of the form V' — P, which has the same angular
dependence as V' — [t1~ for massless leptons, the D~ decay belongs to the category
V' — P, P;. The net angular distribution should therefore have the same form as that for
P — V(= ITI7)V(— PiP,;). The angular distribution is thus given by Eq. (64), where
the definitions of angles are the same as in Eqs. (63) and (B6) with ¢ replaced by D",
[* replaced by DF, and K replaced by the charmed meson arising from the D" decay.
The angular distribution for the CP-conjugate decay B — D*~(— D;~)D*(— D) is
given as in Eq. (¥U). The weighting functions collected in Table § can be used to extract
the corresponding observables from experimental data.

At this point, a few comments concerning the time evolution of these angular dis-
tributions are in order. Let us first consider decays of neutral By mesons. Since here
the final states are flavour-specific, no interference effects between By~ By mixing and
decay processes arise in this case. Consequently, the time evolution of the corresponding
observables is only governed by the “mixing” of the initial particle, which is either a pure
B, or By. For By — D:*(— D¥~)D*~(— Dr) and B; — D:~(— D;~)D**(— D),
the time evolution of a generic observable Q of the angular distribution takes hence the
form Q(t) = Q(0) e cos?(Amt/2), while we have Q(t) = Q(0) e~ sin*(Amt/2) in
the case of By — D>~ (— D;~)D**(— Dr) and By — DT (— Df~)D*~(— D). The
time evolutions of the untagged flavour-specific decays and the related B* decays can
be obtained straightforwardly from these expressions by setting Am = 0.
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VI Summary

The kinematics of B and By meson decays into two vector-particles, which both con-
tinue to decay through CP-conserving interactions into two lighter particles, involve three
independent decay angles. The time evolution of the coefficients of the corresponding an-
gular distributions contains valuable information about the lifetime and mass differences
between the B, mass eigenstates BY and BL, the relative magnitudes and phases of CP-
odd and CP-even decay amplitudes, and CP-violating effects, including the Wolfenstein
parameter n and the CKM angle 3. The ratios of these coefficients are estimated by
using various form-factor models. Determinations of these time-dependent coefficients
will be useful in testing these models and furthermore in determining the extent to which
factorization or the SU(3) flavour symmetry of strong interactions hold in these decays.

The observables of the angular distributions can be determined from experimental
data by an angular-moment analysis in which the data are weighted by judiciously chosen
weighting functions in order to arrive directly at the observables. At times, this permits
the extraction of the fundamental CKM parameters. A method applicable to all kinds
of angular distributions is indicated, where the weighting functions can be determined
without any a priori knowledge of the values of the coefficients. This method is almost
as good as the likelihood-fit method for a small number of parameters and is expected to
give some reliable results even with low statistics where a likelihood fit to a large number
of parameters is inefficient.

The B, meson decays By — J/v¢, D*t D*~ are considered in the light of a possible
width difference (Al')g.. The observables of their angular distributions can be related
to those of the decays B — J/¢K*, D:* D" by using the SU(3) flavour symmetry, where
B stands for By or BT. The full angular distributions for all these transitions are given
explicitly. and the corresponding weighting functions are specified. The time-dependent
observables in all these decays provide information about the corresponding values of
AT and Am. In addition, the decays of Bs mesons inform us about the Wolfenstein
parameter n, while By — J/¢YK*(— 7°Ks) probes the CKM angle 3. Some of the
quantities related to the By case can even be extracted from untagged data samples, where
one does not distinguish between initially present B, or B, mesons. The comparison
between coefficients of angular distributions of B; and B mesons may give us an idea
about SU(3)-breaking effects, while the comparison of colour-suppressed (B — J/¢V)
and colour-allowed (B — D!*V) modes should help in testing the expectation that
factorization holds to a greater extent in the latter case.
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Appendix

A Angular distributions and time dependences for
flavour-specific By — J/4(— [T17) K*(— K*7F) modes

- (-)
The angles are defined as in (b3), where the ¢ meson is replaced by K*, and the K
meson by the strange meson in the final state. In order to parametrize the corresponding
angular distributions, we use the following combinations of trigonometric functions:

fi =2 cos?1p (1 — sin? 0 cos® ¢)

fa = sin?4 (1 — sin? 8 sin? ¢)

f5 = sin® ¢ sin? @

fs = sin®¢ sin 26 sin¢

fs = (1/3/2) sin 2¢ sin? Osin 2¢

fo = (1//2) sin 2¢ sin 20 cos . (90)

Taking into account |A| = |A;| and using the notation A; = A;(0), where f € {0,]|, L},
we obtain

PU[By(t) = J/p(—= ITI7)K*(— K*Ta7)] 9 cos? <Amt) Tt

dcosf dg dcosp - 32r

(91)

X {f1|A0|2 + fo AP+ fo ALl? = falm (AAL) + fs Re (AGA)) + foIm (A(*JAL)}

(92)

BT[Ba(t) — J/p(—= IFI7)K*(— K~ 77F)] 9 o (Amt) Tt
dcos8 dg dcosp 327

Al + Lol Ayl + Fol AL + faTm (ATAL) + fs Re (AgAy) — foTm (4341)}

= S1n

BT[Ba(t) = J/p(—= IFI7)K*(— K—nt)] 9 ., (Amt) e
dcosf dg dcosp 327 ‘

(93)

X {f1|A0|2 + LAY+ BIAL + faIm (AJAL) + fs Re (AGA)) — foTm (ASAL)}

= Sin

BT[By(t) — J/(—= T )K*(— KTr7)] 9 ., <Amt> I (94)
dcosf dg dcosp 327 ‘

X {f1|Ao|2 + fol AYl* + fo| ALl = falm (AjAL) + f5 Re (AgA)) + fe Im (ASAL)}-
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